
EE 553 Homework 4

Solution

Fall 2023

Problem 1 (25 points)

A lossless power system has a demand of 700MW, which is met with 4 generators with the following
linear cost curves and generation limits.

C1(PG1) = 500 + 15PG1 $/hr PG1 ∈ [0, 300]

C2(PG2) = 300 + 20PG2 $/hr PG2 ∈ [0, 150]

C3(PG3) = 200 + 25PG3 $/hr PG3 ∈ [0,+∞)

C4(PG4) = 200 + 23PG4 $/hr PG4 ∈ [0,+∞)

A transmission line presents the following operative constraint:

0.5PG1 + 0.3PG2 − 0.2PG3 ≤ 100

Write a Simplex method to solve this problem. Report the program code and the tableau at each
iteration. What are the optimal solution and the optimal value of the objective function?

Solution. The Matlab code for the Simplex method is

1 tbl = [ 1 1 1 1 0 0 0 700

2 1 0 0 0 1 0 0 300

3 0 1 0 0 0 1 0 150

4 0.5 0.3 -0.2 0 0 0 1 100

5 -8 -3 2 0 0 0 0 -17300];

6 ibv = [4 5 6 7]; % indices of basic variables

7 inbv = [1 2 3]; % indices of nonbasic variables

8

9 icost = size(tbl ,1); % row of reduced cost in the tableau

10 iA = 1:icost -1; % row indices of data matrix in the tableau

11 ib = size(tbl ,2); % col of b in the tableau

12

13 ienter = 1; % index of init. NBV (in inbv) to enter the basis

14

15 iter = 0;

16 while ~isempty(ienter)

17 % find the basic variable to exit the basis

18 eps = tbl(iA , ib) ./ tbl(iA , inbv(ienter));

19 eps(eps < 0) = inf; % skip rows with negative coeff.

20 [v, iexit] = min(eps);

21

22 % update the tableau by Gaussian elimination

23 tbl(iexit , :) = tbl(iexit , :) / tbl(iexit , inbv(ienter));

24 for i = 1:icost

25 if i ~= iexit && tbl(i, inbv(ienter)) ~= 0

26 tbl(i, :) = tbl(i, :) - tbl(i, inbv(ienter)) * tbl(iexit , :);
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27 end

28 end

29

30 % update the basic/nonbasic variable list

31 tmp = inbv(ienter);

32 inbv(ienter) = ibv(iexit);

33 ibv(iexit) = tmp;

34

35 % find the nonbasic variable to enter the basis

36 [rc , ienter] = min(tbl(icost , inbv));

37 if rc >= -1e-8

38 ienter = [];

39 end

40 iter = iter + 1;

41

42 fprintf(’Iteration %i\n============\n’, iter);

43 fprintf(’Tableau :\n’)

44 fprintf(1,’%7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %7.3f %9.2f\n’,tbl.’);

45 fprintf(’Indices of basic variables: %i %i %i %i\n’,ibv);

46 fprintf(’\n’);

47 end

The output is

1 Iteration 1

2 ============

3 Tableau:

4 0.000 0.400 1.400 1.000 0.000 0.000 -2.000 500.00

5 0.000 -0.600 0.400 0.000 1.000 0.000 -2.000 100.00

6 0.000 1.000 0.000 0.000 0.000 1.000 0.000 150.00

7 1.000 0.600 -0.400 0.000 0.000 0.000 2.000 200.00

8 0.000 1.800 -1.200 0.000 0.000 0.000 16.000 -15700.00

9 Indices of basic variables: 4 5 6 1

10

11 Iteration 2

12 ============

13 Tableau:

14 0.000 2.500 0.000 1.000 -3.500 0.000 5.000 150.00

15 0.000 -1.500 1.000 0.000 2.500 0.000 -5.000 250.00

16 0.000 1.000 0.000 0.000 0.000 1.000 0.000 150.00

17 1.000 0.000 0.000 0.000 1.000 0.000 0.000 300.00

18 0.000 -0.000 0.000 0.000 3.000 0.000 10.000 -15400.00

19 Indices of basic variables: 4 3 6 1

The optimal solution is P ∗
G = [300, 0, 250, 150] MW, and the optimal objective value is 15400 $/hr. ■
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Problem 2 (25 points)

Consider the 3-bus power system in Fig. 1 where the line reactance are x = 0.2 p.u. and thermal
limits are 80 MW for all lines. The generators have the following operating costs:

C1(PG1) = 8PG1 $/hr PG1 ∈ [0, 100]

C2(PG2) = 10PG2 $/hr PG2 ∈ [0, 100]

C3(PG3) = 15PG3 $/hr PG3 ∈ [0, 100]

Bus 1

x = 0.2 pu

Bus 2

x
=
0.
2
pu

Bus 3
x
=
0.2

pu

Figure 1: Three-bus system in Problem 2.

a) Develop a plot of the LMP at bus 3 as a function of the load at bus 3 for a range [0, 250] MW,
considering transmission line and generator limits in normal operation (no contingencies). Show
all steps.

Solution. It is obvious that when no constraints are imposed, the most economic option is to
dispatch entirely from generator 1. So when the load is less than 100 MW, the power is supplied
entirely from generator 1 and the LMP at bus 3 is $8. When the load is between 100 and 140, the
incremental generation is supplied by generator 2 and the marginal cost is therefore $10. When
PG1 = 100 and PG2 = 40, P13 = 2PG1/3 + PG2/3 = 80 is at the limit. Further increase of PG2

needs to be accompanied by corresponding decrease of PG1 to ensure the line limit is not violated.
Specifically, to make sure P13 = 2PG1/3 + PG2/3 stays at 80, to increase the load at bus 3 by
every 1 MW, generator 2 generates 2 MW more and generator 1 generates 1 MW less. So the
marginal cost is 2×10−8 = $12. When PG1 and PG2 are both at 80 MW, P23 = PG1/3+2PG2/3
also hits the limit. There is no way to generate more than 160 MW from generators 1 and 2
since if we add the two line flow constraints P13 ≤ 80, P23 ≤ 80, we get PG1 + PG2 ≤ 160. The
additional power has to be generated by generator 3 so the LMP is $15. The plot is shown in
Fig. 2. ■

b) Develop the same plot, but considering N − 1 transmission line contingencies.
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PL3 (MW)

LMP ($)
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10

12

15

Figure 2: LMP for Problem 2a).

PL3 (MW)

LMP ($)

80 180

8

15

Figure 3: LMP for Problem 2b).

Solution. We need to make sure the generation dispatch is the most economic and satisfies the
line flow constraints under all four scenarios (base case and three contingencies). The generation
output isn’t affected by the scenario, but the line flow is. For each transmission line, we need
to identify the scenario under which the line flow is the highest, and ensure the constraint is
satisfied by the dispatch under that scenario.

It is not hard to verify that flow on line 1-2 is the highest when either line 1-3 or line 2-3 is
outaged. Similarly, flow on line 1-3 (2-3) is the highest when line 2-3 (1-3) is outaged.
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When the load is less than 80 MW, the power is supplied entirely from generator 1 and the LMP
at bus 3 is $8. The sum of power output from generators 1 and 2 can’t go beyond 80 MW since
the line flow on line 1-2 (1-3) is PG1+PG2 when line 1-3 (1-2) is outaged. So when load is between
80 and 180 MW, the incremental generation is supplied by generator 3 and the marginal cost is
$15. The load can’t be served if it is higher than 180 MW due to the generation constraint at
generator 3. The plot of LMP is shown in Fig. 3. ■
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Problem 3 (10+10+10+10+10 points)

Suppose we are solving the following standard form OPF problem using Simplex method:

min

n∑
i=1

Ci(PGi)

A

[
PG

x

]
= b,

[
PG

x

]
≥ 0

The basis matrix at the optimal solution is:

AB =
PG1 PG4

1 1
0 −0.1372

where the first row corresponds to the area balance constraint and the second row to a transmission
line constraint. It is known that at the optimal solution point, PG1 operates at an incremental cost
of 12.5 $/MWh and that PG4 operates at an incremental cost of 14 $/MWh. Determine the LMPs at
the buses corresponding to generators 1 and 4 by answering the following questions:

a) For the OPF problem, how many constraints are there in total?

Solution. The number of constraints is the number of rows of AB , which is two. ■

b) What is the Lagrangian L for this problem?

Solution. The Lagrangian is

L =

n∑
i=1

Ci(PGi) + λ⊤
(
A

[
PG

x

]
− b

)
. ■

c) Using the marginal costs of generators 1 and 4, write down the first order necessary conditions
for optimality corresponding to ∂L/∂PG1 and ∂L/∂PG4.

Solution. The first order conditions are

∂L
∂PG1

=
dC1(PG1)

dPG1
+ (λ⊤A)PG1

= 0

∂L
∂PG4

=
dC4(PG4)

dPG4
+ (λ⊤A)PG4

= 0

where (·)PG1
denotes the column of the matrix corresponding to PG1. ■

d) What are the values of the Lagrange multipliers at the optimal solution?

Solution. From the first order condition we have

dC1(PG1)

dPG1
+ (λ⊤A)PG1

= 12.5 + λ1 = 0,

dC4(PG4)

dPG4
+ (λ⊤A)PG4

= 14 + λ1 − 0.1372λ4 = 0,

which implies
λ1 = −12.5, λ4 = 10.93. ■
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e) What are the LMPs corresponding to generators 1 and 4?

Solution. The LMPs at buses 1 and 4 are nothing but−(λ⊤A)PG1
= −λ1 = 12.5 and−(λ⊤A)PG4

=
0.1372λ4 − λ1 = 14. ■
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