
EE 553 Homework 3

Solution

Fall 2023

Problem 1 (10+10+10 points)

Assume that all three of the thermal units described below are running. Find the economic dispatch
schedule to serve the total demand of 450 MW. Report either computer code with results OR the
corresponding algebraic solution.

Input/output curve (MBtu/hr vs. MW) Pmin(MW) Pmax (MW) Fuel cost ($/MBtu)

225 + 8.4P1 + 0.0025P 2
1 45 350 0.8

729 + 6.3P2 + 0.0081P 2
2 45 350 1.02

400 + 7.5P3 + 0.0025P 2
3 47.5 450 0.9

Solution. The fuel cost curves are the product of the input/output curve and the fuel cost, which are

C1(P1) = 0.002P 2
1 + 6.72P1 + 180

C2(P2) = 0.008262P 2
2 + 6.426P2 + 743.58

C3(P3) = 0.00225P 2
3 + 6.75P3 + 360 ■

a) Use the lambda iteration method with generation limits ignored.

Solution. We are trying to find the optimal [P1, P2, P3] that solves

min

3∑
i=1

Ci(Pi) (1a)

s.t.

3∑
i=1

Pi = 450 (1b)

With the lambda iteration method, we form the Lagrangian

L(P1, P2, P3, λ) =

3∑
i=1

Ci(Pi) + λ(450−
3∑

i=1

Pi).

The first order necessary condition is

∂L
∂Pi

= 0, i = 1, 2, 3, (2a)

1

∂L
∂λ

= 0, (2b)

from which we have

0.004P1 + 6.72 = λ =⇒ P1 =
λ− 6.72

0.004

0.016524P2 + 6.426 = λ =⇒ P2 =
λ− 6.426

0.016524

0.0045P3 + 6.75 = λ =⇒ P3 =
λ− 6.75

0.0045
P1 + P2 + P3 = 450

Plugging Pi as functions of λ into (2b), we have

λ− 6.72

0.004
+

λ− 6.426

0.016524
+

λ− 6.75

0.0045
= 450.

This is a linear equation in λ so the solution can be readily solved for. However, using lambda
iteration implemented by the Matlab code below, we obtain

λ∗ = 7.5439.

So the optimal solution is

P ∗
1 =

λ∗ − 6.72

0.004
= 205.97,

P ∗
2 =

λ∗ − 6.426

0.016524
= 67.65,

P ∗
3 =

λ∗ − 6.75

0.0045
= 176.42.

The optimal cost is therefore 4485.62.

1 eps = 1e-4;

2

3 f = @(x) (x - 6.72) /0.004 + (x - 6.426) /0.016524 + (x - 6.75) /0.0045;

4

5 lambda_h = 10;

6 lambda_l = 5;

7 iter = 0;

8

9 while lambda_h - lambda_l >= eps

10 lambda_m = 0.5 * (lambda_h + lambda_l);

11 if f(lambda_m) > 450

12 lambda_h = lambda_m;

13 else

14 lambda_l = lambda_m;

15 end

16 iter = iter + 1;

17 end

18

19 iter

20 lambda_m

The output is

2

1 iter = 16

2 lambda_m = 7.5439

■

b) Use the steepest descent method (Lecture 11, slide 13) with generation limits ignored. You are
free to choose any step size rule.

Solution. Steepest descent is used to solve an unconstrained optimization problem. Since problem
(1) has an equality constraint, we need to eliminate the constraint first. This can be done by
solving for one of the Pi’s in (1b), and plugging it in the objective function (1a). For example,
we can solve for P1. In this case problem (1) becomes

min
P2,P3

C1(450− P2 − P3) + C2(P2) + C3(P3). (3)

It is easy to see problems (1) and (3) are equivalent.

In steepest descent, we update [P2, P3] iteratively along the negative gradient direction of the
objective function in (3) using[

P
(k+1)
2

P
(k+1)
3

]
=

[
P

(k)
2

P
(k)
3

]
− µ

[
0.0205P2 + 0.004P3 − 2.094
0.004P2 + 0.0085P3 − 1.77

]
where µ is the step size. The following Matlab code implements steepest descent algorithm to

solve (3) with a constant step size of µ = 10 with initial value [P
(0)
2 , P

(0)
3] = [225, 225].

1 eps = 1e-4;

2 mu = 10;

3

4 % gradient

5 grad = @(x) [0.0205*x(1) + 0.004*x(2) - 2.094; ...

6 0.004*x(1) + 0.0085*x(2) - 1.77];

7

8 x = [225; 225];

9 err = eps + 1;

10 iter = 0;

11

12 while err > eps

13 xnew = x - mu * grad(x);

14 err = norm(xnew - x);

15 x = xnew;

16 iter = iter +1;

17 end

18

19 x

20 grad(x)

21 iter

The output is

1 x = 67.7342

2 176.3614

3 ans = 1.0e-05 *

4 -0.2650

5 0.8757

6 iter = 88

The optimal solution is P ∗ = [205.91, 67.73, 176.36]. The optimal cost is 4485.64. ■

3

Figure 1: Visualization of the steepest descent iteration in Problem 1(b).

c) Use the lambda iteration method with generation limits enforced.

Solution. The solution method differs from 1(a) in how f is evaluated in the third line of the
Matlab code. The line needs to be changed to

1 pmin = [45; 45; 47.5];

2 pmax = [350; 350; 450];

3

4 f = @(x) min(max((x - 6.72) /0.004 , pmin (1)), pmax (1)) + ...

5 min(max((x - 6.426) /0.016524 , pmin (2)), pmax (2)) + ...

6 min(max((x - 6.75) /0.0045 , pmin (3)), pmax (3));

The solution stays the same. ■

4

Problem 2 (20 points)

Design a program to repeat the Newton OPF problem in Lecture 13, slide 23, but now with impedance
of the line set to 0.06 + j0.08 p.u. Solve the problem to optimality with tolerance ϵ = 10−5.

Solution. We can formulate the OPF problem as

min 200P 2
G1 + 2000PG1 + 100P 2

G2 + 2200PG2

s.t. 6− 6 cos θ2 − 8 sin θ2 − PG1 = 0

11− 6 cos θ2 + 8 sin θ2 − PG2 = 0

The Newton OPF uses the method of Lagrange multiplier to solve the above problem. The Lagrangian
is

L(θ2, PG1, PG2, λ) = 200P 2
G1 + 2000PG1 + 100P 2

G2 + 2200PG2+

λ1(6− 6 cos θ2 − 8 sin θ2 − PG1) + λ2(11− 6 cos θ2 + 8 sin θ2 − PG2)

The first order necessary condition of the minimum is

∇L =

∂L/∂θ2
∂L/∂PG1

∂L/∂PG2

∂L/∂λ1

∂L/∂λ2

 =

6(λ1 + λ2) sin θ2 − 8(λ1 − λ2) cos θ2

2000 + 400PG1 − λ1

2200 + 200PG2 − λ2

6− 6 cos θ2 − 8 sin θ2 − PG1

11− 6 cos θ2 + 8 sin θ2 − PG2

 = 0

To find the solution to the equations, we apply Newton’s method. The Hessian matrix is

∇2L =

∂2L
∂θ22

∂2L
∂θ2∂PG1

∂2L
∂θ2∂PG2

∂2L
∂θ2∂λ1

∂2L
∂θ2∂λ2

∂2L
∂PG1∂θ2

∂2L
∂P 2

G1

∂2L
∂PG1∂PG2

∂2L
∂PG1∂λ1

∂2L
∂PG1∂λ2

∂2L
∂PG2∂θ2

∂2L
∂PG2∂PG1

∂2L
∂P 2

G2

∂2L
∂PG2∂λ1

∂2L
∂PG2∂λ2

∂2L
∂λ1∂θ2

∂2L
∂λ1∂PG1

∂2L
∂λ1∂PG2

∂2L
∂λ2

1

∂2L
∂λ1∂λ2

∂2L
∂λ2∂θ2

∂2L
∂λ2∂PG1

∂2L
∂λ2∂PG2

∂2L
∂λ2∂λ1

∂2L
∂λ2

2

=

6(λ1 + λ2) cos θ2 + 8(λ1 − λ2) sin θ2 0 0 6 sin θ2 − 8 cos θ2 6 sin θ2 + 8 cos θ2

0 400 0 −1 0
0 0 200 0 −1

6 sin θ2 − 8 cos θ2 −1 0 0 0
6 sin θ2 + 8 cos θ2 0 −1 0 0

and the Newton step is

θ
(k+1)
2

P
(k+1)
G1

P
(k+1)
G2

λ
(k+1)
1

λ
(k+1)
2

 =

θ
(k)
2

P
(k)
G1

P
(k)
G2

λ
(k)
1

λ
(k)
2

−∇−2L(θ(k)2 , P
(k)
G1 , P

(k)
G2 , λ

(k))∇L(θ(k)2 , P
(k)
G1 , P

(k)
G2 , λ

(k)).

5

The iterative process stops when
∥∥∥∇L(θ(k)2 , P

(k)
G1 , P

(k)
G2 , λ

(k))
∥∥∥
2
≤ ϵ for some given ϵ > 0.

The Matlab code is

1 eps = 1e-5;

2 x = [0; 0; 5; 0; 0];

3 f = @(x) [6*(x(4)+x(5))*sin(x(1)) - 8*(x(4)-x(5))*cos(x(1))

4 2000 + 400*x(2) - x(4)

5 2200 + 200*x(3) - x(5)

6 6 - 6*cos(x(1)) - 8*sin(x(1)) - x(2)

7 11 - 6*cos(x(1)) + 8*sin(x(1)) - x(3)];

8 J = @(x) [6*(x(4)+x(5))*cos(x(1)) + 8*(x(4)+x(5))*sin(x(1)), 0, 0 , ...

9 6*sin(x(1)) - 8*cos(x(1)), 6*sin(x(1)) + 8*cos(x(1));

10 0, 400, 0 -1, 0;

11 0, 0, 200, 0, -1;

12 6*sin(x(1)) - 8*cos(x(1)), -1, 0, 0, 0;

13 6*sin(x(1)) + 8*cos(x(1)), 0, -1, 0, 0];

14 iter = 0;

15

16 s1 = "Iteration %2i: mismatch = %11.6f, theta2 = %7.4f, P1 = %7.4f, ";

17 s2 = "P2 = %7.4f, lambda1 = %7.4f, lambda2 = %7.4f \n";

18

19 while norm(f(x)) > eps

20 % Newton -Raphson iteration

21 xnew = x - J(x) \ f(x);

22

23 iter = iter + 1;

24 fprintf(s1+s2, iter , norm(f(xnew)), xnew (1), xnew (2), xnew (3), ...

25 xnew (4), xnew (5));

26

27 % update variables

28 x = xnew;

29 end

The program output is

1 Iteration 1: mismatch = 8312.773035 , theta2 = -0.2500, P1 = 2.0000 , P2 =

3.0000 , lambda1 = 2800.0000 , lambda2 = 2800.0000

2 Iteration 2: mismatch = 1524.111011 , theta2 = -0.1134, P1 = 0.9044 , P2 =

4.0632 , lambda1 = 2361.7447 , lambda2 = 3012.6421

3 Iteration 3: mismatch = 127.916993 , theta2 = -0.1355, P1 = 1.1343 , P2 =

3.9728 , lambda1 = 2453.7036 , lambda2 = 2994.5597

4 Iteration 4: mismatch = 12.485426 , theta2 = -0.1335, P1 = 1.1186 , P2 =

3.9882 , lambda1 = 2447.4372 , lambda2 = 2997.6460

5 Iteration 5: mismatch = 1.185236 , theta2 = -0.1337, P1 = 1.1202 , P2 =

3.9869 , lambda1 = 2448.0886 , lambda2 = 2997.3840

6 Iteration 6: mismatch = 0.112770 , theta2 = -0.1337, P1 = 1.1201 , P2 =

3.9870 , lambda1 = 2448.0271 , lambda2 = 2997.4092

7 Iteration 7: mismatch = 0.010727 , theta2 = -0.1337, P1 = 1.1201 , P2 =

3.9870 , lambda1 = 2448.0329 , lambda2 = 2997.4068

8 Iteration 8: mismatch = 0.001020 , theta2 = -0.1337, P1 = 1.1201 , P2 =

3.9870 , lambda1 = 2448.0324 , lambda2 = 2997.4070

9 Iteration 9: mismatch = 0.000097 , theta2 = -0.1337, P1 = 1.1201 , P2 =

3.9870 , lambda1 = 2448.0324 , lambda2 = 2997.4070

10 Iteration 10: mismatch = 0.000009 , theta2 = -0.1337, P1 = 1.1201 , P2 =

3.9870 , lambda1 = 2448.0324 , lambda2 = 2997.4070

The optimal solution is P ∗
G1 = 1.1201 p.u. and P ∗

G2 = 3.9870 p.u., the optimal cost is 12,852 $/hr. ■

6

Problem 3 (20+15+15 points)

A three-generator system is serving a total load of 5 p.u.. The fuel cost curves of the generators are

C1(Pg1) = P 2
g1

C2(Pg2) = 3P 2
g2

C3(Pg3) = 4P 2
g3

Generator 1 can generate up to 3 p.u., generator 2 up to 2 p.u., and due to power transfer capability
constraint, generator 2 and 3 can only generate up to 5 p.u. in total. To determine the minimum cost
to serve the load, the following problem is formulated (where, for notational brevity, we use x1, x2, x3

in place of Pg1, Pg2, and Pg3):

min x2
1 + 3x2

2 + 4x2
3

s.t. x1 + x2 + x3 = 5

x1 ≤ 3

x2 ≤ 2

x2 + x3 ≤ 5

In the following, use different algorithms to solve this problem. Report either computer code with
results OR the corresponding algebraic solution. For all Newton iterations, use ℓ2-norm with tolerance
ϵ = 10−5 as the stopping criterion.

a) Lagrange multiplier method with equality constraint. Hint: you can always rewrite an inequality
constraint a⊤x ≤ b as a equality constraint a⊤x+ s2 = b with slack variable s.

Solution. Let’s introduce three slack variables and rewrite the optimization problem as

min x2
1 + 3x2

2 + 4x2
3

s.t. x1 + x2 + x3 = 5

x1 + s21 = 3

x2 + s22 = 2

x2 + x3 + s23 = 5

The Lagrangian is

L(x) = x2
1 + 3x2

2 + 4x2
3 + λ1(x1 + x2 + x3 − 5)+

λ2(x1 + s21 − 3) + λ3(x2 + s22 − 2) + λ4(x2 + x3 + s23 − 5),

where x = [x1, x2, x3, s1, s2, s3, λ1, λ2, λ3, λ4]
⊤. The first order necessary condition of the mini-

mum is

∇L(x) =

∂L/∂x1

∂L/∂x2

∂L/∂x3

∂L/∂s1
∂L/∂s2
∂L/∂s3
∂L/∂λ1

∂L/∂λ2

∂L/∂λ3

∂L/∂λ4

=

2x1 + λ1 + λ2

6x2 + λ1 + λ3 + λ4

8x3 + λ1 + λ4

2λ2s1
2λ3s2
2λ4s3

x1 + x2 + x3 − 5
x1 + s21 − 3
x2 + s22 − 2

x2 + x3 + s23 − 5

= 0

7

To find the solution to the equations, we apply Newton’s method. The Hessian matrix is

∇2L =

2 0 0 0 0 0 1 1 0 0
0 6 0 0 0 0 1 0 1 1
0 0 8 0 0 0 1 0 0 1
0 0 0 2λ2 0 0 0 2s1 0 0
0 0 0 0 2λ3 0 0 0 2s2 0
0 0 0 0 0 2λ4 0 0 0 2s3
1 1 1 0 0 0 0 0 0 0
1 0 0 2s1 0 0 0 0 0 0
0 1 0 0 2s2 0 0 0 0 0
0 1 1 0 0 2s3 0 0 0 0

and the Newton step is

x(k+1) = x(k) −∇−2L(x(k))∇L(x(k)).

The iterative process stops when
∥∥∇L(x(k))

∥∥
2
≤ ϵ for some given ϵ > 0.

The Matlab code is

1 eps = 1e-5;

2

3 % initial guess of x

4 x1_0 = 1;

5 x2_0 = 1;

6 x3_0 = 5 - x1_0 - x2_0;

7 s1_0 = sqrt(3 - x1_0);

8 s2_0 = sqrt(2 - x2_0);

9 s3_0 = sqrt(5 - x2_0 - x3_0);

10 x = [x1_0; x2_0; x3_0; s1_0; s2_0; s3_0; 1; 1; 1; 1];

11

12 f = @(x) [2*x(1) + x(7) + x(8)

13 6*x(2) + x(7) + x(9) + x(10)

14 8*x(3) + x(7) + x(10)

15 2*x(8)*x(4)

16 2*x(9)*x(5)

17 2*x(10)*x(6)

18 x(1) + x(2) + x(3) - 5

19 x(1) + x(4)^2 - 3

20 x(2) + x(5)^2 - 2

21 x(2) + x(3) + x(6)^2 - 5];

22

23 J = @(x) [2, 0, 0, 0, 0, 0, 1, 1, 0, 0

24 0, 6, 0, 0, 0, 0, 1, 0, 1, 1

25 0, 0, 8, 0, 0, 0, 1, 0, 0, 1

26 0, 0, 0, 2*x(8), 0, 0, 0, 2*x(4), 0, 0

27 0, 0, 0, 0, 2*x(9), 0, 0, 0, 2*x(5), 0

28 0, 0, 0, 0, 0, 2*x(10), 0, 0, 0, 2*x(6)

29 1, 1, 1, 0, 0, 0, 0, 0, 0, 0

30 1, 0, 0, 2*x(4), 0, 0, 0, 0, 0, 0

31 0, 1, 0, 0, 2*x(5), 0, 0, 0, 0, 0

32 0, 1, 1, 0, 0, 2*x(6), 0, 0, 0, 0];

33

34 while norm(f(x)) > eps

35 x = x - J(x) \ f(x);

36 end

Figure 2 shows the initial guesses that converges to the global optimal solution x∗ = [3, 8/7, 6/7]⊤.

Note that not all initial guesses lead to the global optimal solution. Newton’s algorithm is not to
blame, since for the other solutions, the first order necessary conditions are always met when the

8

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2: Initial guess of x1, x2 that converge to the global optimal solution.

algorithm converges. The problem is that the first order necessary conditions are not sufficient
for this problem. The original inequality-constrained problem is actually convex. However,
the introduction of the slack variables destroys the convexity structure of the problem. So,
although the equality-constrained problem is an equivalent reformulation, the problem structure
is changed from convex to nonconvex, and the necessary condition is no longer sufficient. This
problem illustrates the disadvantage of the reformulation method.

The KKT condition, which is an extension of the first order necessary condition for inequality-
constrained problems, resolves the issue and guarantees sufficiency of global optimality for
inequality-constrained problems (under mild technical condition). Our textbook covers KKT
conditions, please check it if you are interested. ■

b) Active set method (Lecture 13, slide 35). In the second step in the while loop, release the
inequality constraint as long as the corresponding optimal Lagrange multiplier is negative.

Solution. First, we solve the problem assuming no inequality constraints are binding. The prob-
lem is

min x2
1 + 3x2

2 + 4x2
3 (4a)

s.t. x1 + x2 + x3 = 5 (4b)

The optimal solution is x∗ = [60/19, 20/19, 15/19]⊤.

We see that the inequality constraint x1 ≤ 3 is violated, so it is added as an equality constraint
in (5). The optimization problem becomes

min x2
1 + 3x2

2 + 4x2
3 (5a)

9

s.t. x1 + x2 + x3 = 5 (5b)

x1 = 3 (5c)

The corresponding Lagrangian is

L = x2
1 + 3x2

2 + 4x2
3 + λ1(x1 + x2 + x3 − 5) + λ2(x1 − 3).

λ∗
2 = 6/7 > 0 so the constraint should not be released. No inequality constraints are violated.

The active set method terminates and the optimal solution is x∗ = [3, 8/7, 6/7]⊤. ■

c) Penalty function method (Lecture 14, slide 24). Start with c1 = 1 and gradually increase it in
each iteration with ck+1 = βck with β ∈ [4, 10]. Experiment with different β and use the optimal
x(k) from the previous iteration to avoid ill-conditioning of the Hessian matrix. Before you start,
answer the following questions:

• Does the gradient of the penalty function exist for all values of c and x?

• Does the Hessian of the penalty function exist for all values of c and x?

Solution. Given the penalty factor ck > 0, the penalty function is

fck(x) = x2
1 + 3x2

2 + 4x2
3 + ck

(
(x1 + x2 + x3 − 5)2 + p(x1 − 3) + p(x2 − 2) + p(x2 + x3 − 5)

)
where p(x) := (max{0, x})2. The gradient of the penalty function exists for all values of c and
x since dp(x)/dx = max{0, 2x}. But the Hessian does not exist when x1 = 3 or x2 = 2 or
x2 − x3 = 5 since the derivative of the gradient at these points are not defined.

For each iteration, we need to solve the unconstrained optimization problem

min fck(x) (6)

This can be solved using a number of algorithms, including steepest descent and Newton’s
method. Both methods are fine, but just be careful that if you choose Newton’s method, the
Hessian matrix needs to be approximated at points where it is not defined.

As an example, we use steepest descent algorithm to solve the minimization problem. Each
iteration is x

(k+1)
1

x
(k+1)
2

x
(k+1)
3

 =

x
(k)
1

x
(k)
2

x
(k)
3

− µck∇fck(x)

where

∇fck(x) =
2x

(k)
1 + 2ck

(
x
(k)
1 + x

(k)
2 + x

(k)
3 − 5

)
+ ck max

{
0, 2x

(k)
1 − 6

}
6x

(k)
2 + ck

(
2x

(k)
1 + 2x

(k)
2 + 2x

(k)
3 − 10 + max

{
0, 2x

(k)
2 − 4

}
+max

{
0, 2x

(k)
2 + 2x

(k)
3 − 10

})
8x

(k)
3 + ck

(
2x

(k)
1 + 2x

(k)
2 + 2x

(k)
3 − 10 + max

{
0, 2x

(k)
2 + 2x

(k)
3 − 10

})

After the algorithm converges, the optimal solution x(k)∗ is recorded and
∥∥∥x(k)∗ − x(k−1)∗

∥∥∥ is

evaluated. The algorithm terminates when it is sufficiently small. Otherwise, problem (6) is
solved again with ck+1 > ck.

The overall algorithm implementation in Matlab is shown below:

10

1 eps = 1e-5;

2 mu = 0.1;

3

4 % gradient

5 grad = @(x,c) [2*x(1) + 2*c*(x(1)+x(2)+x(3) -5) + c*max(0, 2*x(1) -6)

6 6*x(2) + 2*c*(x(1)+x(2)+x(3) -5) + c*max(0, 2*x(2) -4) + ...

7 c*max(0, 2*x(2)+2*x(3) -10)

8 8*x(3) + 2*c*(x(1)+x(2)+x(3) -5) + c*max(0, 2*x(2) +2*x(3) -10)];

9

10 x = [3; 2; 0];

11 err = eps + 1;

12 beta = 10;

13 c = 1 / beta;

14 iter = 0;

15

16 s = "Iteration %i: mismatch = %8.6f, x1 = %6.4f, x2 = %6.4f, x3 = %6.4f \n";

17

18 while err > eps

19 c = beta * c;

20 xnew = descent(x, grad , c);

21 iter = iter + 1;

22 err = norm(xnew - x);

23

24 fprintf(s, iter , norm(err), xnew (1), xnew (2), xnew (3));

25

26 x = xnew;

27 end

28

29 function x = descent(x, grad , c)

30 % steepest descent algorithm

31 eps = 1e-10;

32 mu = 1 / (40*c); % adjust step size to avoid divergence

33 err = eps + 1;

34

35 while err > eps

36 xnew = x - mu * grad(x,c);

37 err = norm(xnew - x);

38 x = xnew;

39 end

40 end

The program output is

1 Iteration 1: mismatch = 1.789669 , x1 = 1.9355 , x2 = 0.6452 , x3 = 0.4839

2 Iteration 2: mismatch = 1.121048 , x1 = 2.9703 , x2 = 0.9901 , x3 = 0.7426

3 Iteration 3: mismatch = 0.167678 , x1 = 3.0036 , x2 = 1.1216 , x3 = 0.8412

4 Iteration 4: mismatch = 0.024079 , x1 = 3.0004 , x2 = 1.1407 , x3 = 0.8555

5 Iteration 5: mismatch = 0.002498 , x1 = 3.0000 , x2 = 1.1426 , x3 = 0.8570

6 Iteration 6: mismatch = 0.000248 , x1 = 3.0000 , x2 = 1.1428 , x3 = 0.8572

7 Iteration 7: mismatch = 0.000025 , x1 = 3.0000 , x2 = 1.1428 , x3 = 0.8572

8 Iteration 8: mismatch = 0.000002 , x1 = 3.0000 , x2 = 1.1428 , x3 = 0.8572

■

11

