
EE 553 Homework 2

Solution

Fall 2023

Problem 1 (10+10 points)

Consider the 3-bus system shown in slide 25, Lecture 5.

a) Obtain the PTDF for a transfer from bus 1 to bus 2 using the DC power flow model. Report
either the Matlab code OR the corresponding algebraic solution.

Solution. We know B′ =
[

14 −10
−10 15

]
; T =

[−1
0

]
. So the angle sensitivities are

dθ

dp
=

[
B′]−1

T =

[
0.1364 0.0909
0.0909 0.1273

] [
−1
0

]
=

[
−0.1364
−0.0909

]
.

The PTDFs can be calculated as the product of negative line susceptance (remember B′ = −B̂
when no shunt is present) and the angle sensitivity difference across the line due to the power
transfer. The line susceptance for line 1-2, 1-3, and 2-3 are b12 = −4, b13 = −5, and b23 = −10,
respectively. So the PTDFs under the power transfer T are

PTDF12,T = −b12
(
dθ1
dp
− dθ2

dp

)
= 4(0 + 0.1364) = 0.5456 ,

PTDF13,T = −b13
(
dθ1
dp
− dθ3

dp

)
= 5(0 + 0.0909) = 0.4545,

PTDF23,T = −b23
(
dθ2
dp
− dθ3

dp

)
= 10(−0.1364 + 0.0909) = −0.4550. ■

b) In the last few months the price of the type of fuel used by generator 2 has increased compared
to generator 1. Generator 2 wants to buy power from Generator 1 to meet its obligations with
customers. Lines 1-3 and 2-3 have practically infinite thermal limits, but line 1-2 is constrained to
transfer 50MW. Using the results in a) of this problem, determine the maximum power transfer
capability from bus 1 to 2 while maintaining the same 100MW of load at bus 3.

Solution. The maximum transfer pmax happens when the line flow on line 1-2 is 50MW, i.e.,

50 = 25.51 + PTDF12,Tpmax =⇒ pmax = 44.89MW . ■

Problem 2 (20 points)

Figure 1 shows a power system in normal operation (base case). The line parameters are r = 0, x = 2.0
with no line charging capacitance, and thermal limit (MVA rating) = 15 MVA. Bus 1 is chosen as the

1



slack bus. Determine the post-contingency flows for an outage of line 1-4 using the DC power flow
model. If there is any, report the line overloads assuming the MW limit is equal to the MVA rating of
each line.

Figure 1: Network for Problem 2.

Solution. We start with building the bus admittance matrix as

Ybus =


−j1.5 j0.5 j0.5 j0.5
j0.5 −j1 0 j0.5
j0.5 0 −j1 j0.5
j0.5 j0.5 j0.5 −j1.5

 .

Then the B′ matrix, when bus 1 is the slack bus, is

B′ =

 1 0 −0.5
0 1 −0.5
−0.5 −0.5 1.5

 .

Since we are interested in finding the LODFs for the post-contingency lines, which are

LODF12,14 =
PTDF12,T

1− PTDF14,T
, (1a)

LODF13,14 =
PTDF13,T

1− PTDF14,T
, (1b)
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LODF24,14 =
PTDF24,T

1− PTDF14,T
, (1c)

LODF34,14 =
PTDF34,T

1− PTDF14,T
, (1d)

T =

 0
0
−1

 , (1e)

we need to find the PTDFs. To do so, we first find the angle sensitivities as

dθ

dp
=

[
B′]−1

T =

 1 0 −0.5
0 1 −0.5
−0.5 −0.5 1.5

−1  0
0
−1

 =

−0.5−0.5
−1

 .

And the PTDFs are

PTDF12,T = −b12
(
dθ1
dp
− dθ2

dp

)
= 0.5(0 + 0.5) = 0.25,

PTDF13,T = −b13
(
dθ1
dp
− dθ3

dp

)
= 0.5(0 + 0.5) = 0.25,

PTDF14,T = −b14
(
dθ1
dp
− dθ4

dp

)
= 0.5(0 + 1) = 0.5,

PTDF24,T = −b24
(
dθ2
dp
− dθ4

dp

)
= 0.5(−0.5 + 1) = 0.25,

PTDF34,T = −b34
(
dθ3
dp
− dθ4

dp

)
= 0.5(−0.5 + 1) = 0.25.

Plugging back in (1), we have

LODF12,14 =
PTDF12,T

1− PTDF14,T
= 0.5,

LODF13,14 =
PTDF13,T

1− PTDF14,T
= 0.5,

LODF24,14 =
PTDF24,T

1− PTDF14,T
= 0.5,

LODF34,14 =
PTDF34,T

1− PTDF14,T
= 0.5.

The post-contingency flows are

P12 = P 0
12 + LODF12,14P

0
14 = 8.80 + 0.5× 7.56 = 12.58 ,

P13 = P 0
13 + LODF13,14P

0
14 = −6.36 + 0.5× 7.56 = −2.58 ,

P24 = P 0
24 + LODF24,14P

0
14 = −1.20 + 0.5× 7.56 = 2.58 ,

P34 = P 0
34 + LODF34,14P

0
14 = 13.63 + 0.5× 7.56 = 17.41 .

Given line flow limit of 15MW, we see that line 3-4 is overloaded. ■
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Problem 3 (20 points)

Solve the following system of linear equations by hand using LU decomposition. Show all steps for 1)
the decomposition; and 2) the substitution.

4 2 2 1
3 6 0 2
2 2 4 3
1 3 2 4



x1

x2

x3

x4

 =


9
11
11
10

 (2)

Solution. The general step of using LU decomposition to solve for (2) (which we denote by Ax = b)
is as follows:

1. Obtain the LU decomposition
LU = A

where L is a lower triangular matrix and U is a unit upper triangular matrix (12 pts).

2. Solve for y := Ux by substitution using Ly = b (6 pts).

3. Solve for x by substitution using Ux = y (2 pts).

Step 1 (LU decomposition):

1. A11 (normalization) (R1 ← R1/4) 
4 1/2 1/2 1/4
3 6 0 2
2 2 4 3
1 3 2 4


2. A21 (elimination) (R2 ← R2 − 3R1) 

4 1/2 1/2 1/4
3 9/2 −3/2 5/4
2 2 4 3
1 3 2 4


3. A22 (normalization) (R2 ← 2R2/9) 

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 2 4 3
1 3 2 4


4. A31 (elimination) (R3 ← R3 − 2R1)

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 3 5/2
1 3 2 4


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5. A32 (elimination) (R3 ← R3 −R2) 
4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 10/3 20/9
1 3 2 4


6. A33 (normalization) (R3 ← 3R3/10)

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 10/3 2/3
1 3 2 4


7. A41 (elimination) (R4 ← R4 −R1) 

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 10/3 2/3
1 5/2 3/2 15/4


8. A42 (elimination) (R4 ← R4 − 5R2/2)

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 10/3 2/3
1 5/2 7/3 55/18


9. A43 (elimination) (R4 ← R4 − 7R3/3)

4 1/2 1/2 1/4
3 9/2 −1/3 5/18
2 1 10/3 2/3
1 5/2 7/3 3/2


So the two triangular matrices are

L =


4 0 0 0
3 9/2 0 0
2 1 10/3 0
1 5/2 7/3 3/2

 , U =


1 1/2 1/2 1/4
0 1 −1/3 5/18
0 0 1 2/3
0 0 0 1

 .

Step 2: 
4 0 0 0
3 9/2 0 0
2 1 10/3 0
1 5/2 7/3 3/2



y1
y2
y3
y4

 =


9
11
11
10


We solve for y by substitution as

• y1 = 9/4
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• 3y1 + 9y2/2 = 11 =⇒ y2 = 17/18

• 2y1 + y2 + 10y3/3 = 11 =⇒ y3 = 5/3

• y1 + 5y2/2 + 7y3/3 + 3y4/2 = 10 =⇒ y4 = 1

Step 3: 
1 1/2 1/2 1/4
0 1 −1/3 5/18
0 0 1 2/3
0 0 0 1



x1

x2

x3

x4

 =


9/4
17/18
5/3
1


We solve for x by substitution as

• x4 = 1

• x3 + 2x4/3 = 5/3 =⇒ x3 = 1

• x2x3/3 + 5x4/18 = 17/18 =⇒ x2 = 1

• x1 + x2/2 + x3/2 + x4/4 = 9/4 =⇒ x1 = 1 ■

The solution is x = [1, 1, 1, 1]⊤ .

Problem 4 (5+15 points)

Consider the problem shown in slide 26, Lecture 7.

a) Since there is a generator and a load at bus 2, without considering the generator reactive power
limit, should bus 2 be modeled as a PV or a PQ bus? Why?

Solution. It should be modeled as a PV bus. Let the power generation of the generator be PG+
jQG and the demand of the load be PL + jQL. The net power injection at the bus is (PG −
PL) + j(QG − QL). Since both PG and PL are specified, the bus real power injection is fixed
and should be enforced. The bus voltage magnitude is also fixed due to the generator voltage
control. Since both the real power injection and the voltage magnitude are fixed, the bus is a
PV bus. On the other hand, although QL is given, QG is unspecified, so the net bus reactive
power injection is not determined. ■

b) Reproduce the solution to the power flow problem considering generator reactive power limit.
Assuming 100 base MVA so that we can divide all the powers shown in the figure by 100 to get
per unit values. Report the code and the program output. Show the values of QG2, s, f , and
x (reactive power generation at bus 2, the status of generator at bus 2, mismatch vector, and
state variables) at each iteration. Please use ℓ2-norm and tolerance ϵ = 1× 10−5 as the stopping
criterion.

Solution. The Matlab code is

1 eps = 1e-5;

2 Qgmin = 0;

3 Qgmax = 2;

4 V2sp = 1.05;

5

6 % power mismatch vectors and power flow Jacobian in PQ mode

7 f_pqmin = @(x) [10*x(2)*sin(x(1)) + 3; 10*x(2)^2 - 10*x(2)*cos(x(1)) + 1.5];

8 f_pqmax = @(x) [10*x(2)*sin(x(1)) + 3; 10*x(2)^2 - 10*x(2)*cos(x(1)) - 0.5];

9 J_pq = @(x) [10*x(2)*cos(x(1)), 10 * sin(x(1));
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10 10*x(2)*sin(x(1)), 20*x(2) -10*cos(x(1))];

11

12 % power mismatch vector and power flow Jacobian in PV mode

13 f_pv = @(x) 10.5* sin(x(1)) + 3;

14 J_pv = @(x) 10.5* cos(x(1));

15

16 % reactive power generation at bus 2

17 Qg2 = @(x) 10*x(2)^2 - 10*x(2)*cos(x(1)) + 1.5;

18

19 x = [0; 1.05];

20 err = eps + 1;

21 iter = 0;

22 s = "PV";

23

24 formatSpec = "Iteration %i: Qg2 = %6.4f, the status is %s, " + ...

25 "theta2 = %7.4f, V2 = %6.4f\n " + ...

26 "The mismatch vector is: [";

27

28 while err > eps

29 if s == "PV"

30 x = x - [J_pv(x) \ f_pv(x); 0];

31 if Qg2(x) > Qgmax

32 snew = "PQmax";

33 elseif QG2(x) < Qgmin

34 snew = "PQmin";

35 end

36 mismatch = f_pv(x);

37 elseif s == "PQmin"

38 x = x - J_pq(x) \ f_pqmin(x);

39 if x(2) < V2sp

40 snew = "PV";

41 end

42 mismatch = f_pqmin(x);

43 else % s == "PQmax"

44 x = x - J_pq(x) \ f_pqmax(x);

45 if x(2) > V2sp

46 snew = "PV";

47 end

48 mismatch = f_pqmax(x);

49 end

50

51 err = norm(mismatch);

52 iter = iter + 1;

53

54 fprintf(formatSpec , iter , norm(Qg2(x)), s, x(1), x(2));

55 if length(mismatch) > 1

56 fprintf(’%g ’, mismatch (1:end -1));

57 end

58 fprintf(’%g]\n’, mismatch(end));

59

60 s = snew;

61 end

The program output at each iteration is

1 Iteration 1: Qg2 = 2.4507 , the status is PV, theta2 = -0.2857, V2 = 1.0500

2 The mismatch vector is: [0.0406501]

3 Iteration 2: Qg2 = 2.0184 , the status is PQmax , theta2 = -0.3020, V2 = 1.0063

4 The mismatch vector is: [0.0072097 0.0183977]

5 Iteration 3: Qg2 = 2.0000 , the status is PQmax , theta2 = -0.3034, V2 = 1.0041

6 The mismatch vector is: [3.18315e-05 4.6328e-05]

7 Iteration 4: Qg2 = 2.0000 , the status is PQmax , theta2 = -0.3034, V2 = 1.0041

8 The mismatch vector is: [3.27808e-10 3.80435e-10]
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■

Problem 5 (8+7+5 points)

Determine the fills that would occur during elimination in the following matrix:

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦


a) Without ordering.

Solution. Result after eliminating node 1:

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦
◦ ◦ ◦ • • • • ◦
◦ • • ◦ • • ◦ •
◦ • • • ◦ • •
◦ • • • • ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ • • • ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦


Result after eliminating node 3:

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦
◦ ◦ ◦ • • • • ◦
◦ • • ◦ • • ◦ • •
◦ • • • ◦ • • •
◦ • • • • ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ • • • ◦ ◦ ◦ ◦

◦ • • ◦ ◦ ◦
◦ ◦



8



Result after eliminating node 4:

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦
◦ ◦ ◦ • • • • ◦
◦ • • ◦ • • ◦ • •
◦ • • • ◦ • • • •
◦ • • • • ◦ • ◦ ◦

◦ • • ◦ ◦ • ◦
◦ ◦ • • • ◦ ◦ ◦ ◦

◦ • • ◦ • ◦ ◦
◦ ◦


Final result (after eliminating node 7):

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦
◦ ◦ ◦ • • • • ◦
◦ • • ◦ • • ◦ • •
◦ • • • ◦ • • • •
◦ • • • • ◦ • ◦ ◦

◦ • • ◦ ◦ • ◦
◦ ◦ • • • ◦ ◦ ◦ ◦ •

◦ • • ◦ • ◦ ◦ •
◦ • • ◦


■

b) Using Tinney 1 ordering method.

Solution. In Tinney 1, the nodes are reordered in ascending order of their degrees. Seen from
the matrix, their original degrees and updated node numbers are

Node # Degree New Node #
1 6 10
2 3 4
3 3 5
4 2 3
5 1 1
6 3 6
7 3 7
8 5 9
9 3 8
10 1 2
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The permuted matrix becomes

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦


Result after eliminating node 3:

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • ◦ ◦


Result after eliminating node 4:

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • ◦ ◦


Final result (after eliminating node 5):

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦ •
◦ • ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • • ◦ ◦


■

c) Using Tinney 2 ordering method.

10



Solution. In Tinney 1, the nodes are reordered in ascending order of their degrees at the beginning
and after the elimination of every node. We start the process with the same matrix we obtained
in Tinney 1: 

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦


Result after eliminating node 3:

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • ◦ ◦


Upon checking the updated degrees, nodes 7 and 8 needs to be swapped:

Node # Degree New Node #
1 1 1
2 1 2
3 2 3
4 3 4
5 3 5
6 3 6
7 4 8
8 3 7
9 5 9
10 7 10

The updated matrix is: 

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • ◦ ◦


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We continue the elimination of node 4, the resulting matrix is

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ •
◦ • ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ • ◦ ◦


Upon checking the updated degrees, nodes 5 and 7 needs to be swapped:

Node # Degree New Node #
1 1 1
2 1 2
3 2 3
4 3 4
5 4 7
6 3 6
7 3 5
8 4 8
9 6 9
10 7 10

The updated matrix is: 

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ • ◦ ◦


We continue the elimination of node 5, the resulting matrix is

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

◦ ◦ • ◦ • ◦
◦ ◦ ◦ ◦ •

◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ • ◦ ◦


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Node # Degree New Node #
1 1 1
2 1 2
3 2 3
4 3 4
5 3 5
6 4 6
7 5 8
8 4 7
9 6 9
10 7 10

Upon checking the updated degrees, nodes 7 and 8 needs to be swapped:

The updated matrix is: 

◦ ◦
◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ •
◦ ◦ • ◦ • ◦
◦ ◦ ◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ • ◦ ◦ ◦


We continue the elimination. However, no more fills are added. So the above matrix is final. ■

Bonus Problem (10 points)

Suppose we have a function ludecomp() at our disposal, which performs LU decomposition and returns
the lower triangular matrix L and the unit upper triangular matrix U. What is the easiest way you
can think of to get the alternative LU decomposition with unit lower triangular matrix instead?

Solution. Suppose the matrix we want to factorize is A. We can use the function to perform the LU
decomposition of A⊤ to get the lower triangular matrix L and unit upper triangular matrix U, then
U′ = L⊤ is an upper triangular matrix and L′ = U⊤ is a unit lower triangular matrix such that
L′U′ = A. ■
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